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When men and women are objectively ranked in a marriage problem, say by beauty, 
then pairing individuals of equal rank is the only stable matching. We generalize this 
observation by providing bounds on the size of the rank gap between mates in a stable 
matching in terms of the size of the ranking sets. Using a metric on the set of matchings, 
we provide bounds on the diameter of the core – the set of stable matchings – in terms 
of the size of the ranking sets and in terms of the size of the rank gap. We conclude that 
when the set of rankings is small, so are the core and the rank gap in stable matchings. We 
construct examples showing that our bounds are essentially tight, and that certain natural 
variants of the bounds fail to hold.
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1. Introduction

1.1. Matching of likes

When considering the dazzling world of stardom and glamor we are not at all surprised to see Angelina Jolie and Brad 
Pitt as a couple. Both are highly ranked in this world, and their match seems natural. We would be bewildered, on the 
other hand, to see Jolie matched up with another man of this world whose physical appearance ranks much lower than 
hers. Such a man, so we expect, would be naturally matched with a woman ranked like him.

Those who are not familiar with the world of entertainment, may find it easier to relate to a similar mating of likes in 
the academic arena. Highly ranked scholars are affiliated, more often than not, with top-tier universities, while those who 
are academically less attractive are affiliated with lesser universities.

The main purpose of this paper is to explain the phenomenon of matching of likes, also known as assortative matching, 
within the framework of the marriage problem introduced by Gale and Shapley (1962). We recall that the solution concept 
for that problem is the core, i.e., the set of stable matchings.
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1.2. The case of a universal ranking

Our benchmark case is that of universal rankings, namely: all men rank women in the same way and all women rank 
men in the same way. It is well known that in this case the only stable matching matches the highest ranked man to the 
highest ranked woman, the second highest ranked man to the second highest ranked woman, and so on. Thus, in this very 
special case, matched individuals have equal ranks.

In this paper we show that the observation above is robust. That is, if rankings are not necessarily universal, but are 
similar to each other, then in any stable matching, matched individuals have similar ranks. Additionally, if rankings are 
similar to each other then, though different stable matchings may exist, they must be close to each other. To make these 
statements precise, we will introduce below quantitative measures of how similar rankings are (the size of the ranking sets), 
how similar the ranks of mates are (the rank gaps), and how close to each other stable matchings are (the size of the core).

1.3. Correlated rankings

The results of this paper (stated informally in the previous paragraph) suggest the similarity of rankings by different 
individuals as a possible explanation of two real-life phenomena: matching of likes and smallness of the core.

To what extent is the assumption of similar rankings by different individuals realistic? Obviously, the assumption of 
a universal ranking is too strong. We can hardly expect a unanimous, universal ranking in anything that involves human 
beings. However, if there is some objective component in the rankings, then individual rankings will be positively correlated; 
the more significant the objective component is, the more similar the rankings will tend to be. This may often be the case. 
Beauty, for example, is indeed in the eyes of the beholder. Nevertheless, in a given culture there is a great deal of agreement 
in the judgement of beauty, and rankings of beauty are positively correlated. Similarly, scholars may differ on the ranking 
of universities, but in all rankings Harvard is among the top, say, ten universities. Below, we use the bound on the range of 
ranks of each individual in a set of rankings as the basis for a measure of the size of that set of rankings.

1.4. Rank gaps and the size of the core

The notion of rank gap is meant to give a quantitative answer to the question how close a given matching is to being 
assortative. A quantitative way to express the fact that a matching is assortative (in the case of universal ranking) is to 
say that for every matched pair, the proportion of men who are better than the husband equals the proportion of women 
who are better than the wife. This suggests that a matching is close to being assortative if the proportions of preferred 
individuals to each of two mates are close to each other. With this in mind, we look at each pair in the matching, and 
define the rank gap as the absolute value of the difference between the woman’s rank in the man’s ranking and the man’s 
rank in the woman’s ranking. Then we consider the maximum, or the average, of these rank gaps over all matched pairs as 
our measures of closeness of the matching to being assortative.

Note that in general, when rankings are not universal, the rank of an individual (and hence the proportion of individuals 
who are better than him/her) is not objectively defined. Thus, in order to compare these proportions between mates, we 
need to use subjective ranks, and the most natural choice is to look at the ranks of the two mates in the eyes of each other. 
Since we are interested here in the case where rankings by different individuals are similar, this choice of ranks may be 
thought of as an approximation of the nearly universal rankings.

The relevant measure of the size of the core is not the number of stable matchings, but the maximal distance between 
them. From the point of view of a woman, the core is small if the ranks of the men she is matched to in the best and worst 
stable matchings are close. The core is small for the women if it is small for them on average. A similar measure of the size 
of the core can be defined for men.

1.5. The main results

Equipped with precise definitions of the above mentioned measures, we give here bounds on the rank gaps in stable 
matchings and on the size of the core, in terms of the size of the sets of rankings. In particular it follows that when these 
sets are small, that is, when rankings are highly correlated, then the rank gaps are small and the core is also small. We 
show, moreover, that the size of the core has a bound in terms of the rank gaps of the two extremal stable matchings.

In the last section, we construct a few examples showing that these bounds are (at least essentially) tight. We also 
provide counterexamples to a number of (seemingly natural) variants of our bounds. In particular, it turns out that in order 
for the core to be small for the women, it is not enough that the men hold highly correlated rankings. We also show that 
an alternative way to measure the size of a set of rankings, say of the women by the men, which considers it small if for 
any two men, the average woman is ranked by them similarly, cannot provide bounds on the size of the core and the rank 
gaps. Finally, we show that our bounds on the size of the core cannot be strengthened to assert that the core is small for 
every individual (not just on average).
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1.6. Related work

It is well known that for general rankings, the rank gaps in stable matchings and the core may be large. In fact, Pittel
(1989) proved that if n men and n women each rank the members of the opposite gender independently and uniformly 
at random, then in the man-optimal stable matching, with high probability as n → ∞, the average man ranks his wife in 
rank ∼ ln n, whereas the average woman ranks her husband in rank ∼ n

ln n . Thus, the average rank gap is at least n
ln n − ln n. 

Moreover, using the analogous result for the woman-optimal stable matching, it follows that the rank difference between 
one’s partners in the two extremal stable matchings (i.e., the size of the core) is n

ln n − ln n. This shows that significant rank 
gaps and a large core are not only possible, but in fact typical, for large marriage markets with random rankings.

Nevertheless, using large data sets from the National Resident Matching Program, Roth and Peranson (1999) observed 
empirically that the core of these markets tends to be small, and wrote:

“One factor that strongly influences the size of the set of stable matchings (which coincides with the core in this simple 
model) is the correlation of preferences among programs and among applicants. When preferences are highly correlated 
(i.e., when similar programs tend to agree which are the most desirable applicants, and applicants tend to agree which 
are the most desirable programs), the set of stable matchings is small.”

The theoretical result here, bounding the size of the core in terms of the size of the ranking sets, is a formalization of this 
observation.

Following Roth and Peranson (1999), there is a growing literature on stable matchings in large random markets. Most of 
these papers obtain results showing that, with high probability as the size of the market tends to infinity, the size of the 
core vanishes. But, in view of Pittel’s result cited above, each of these results is driven by one or more special assumptions 
which distinguish the model studied from Pittel’s plain random model. In particular, Immorlica and Mahdian (2005) and 
Kojima and Pathak (2009) assume that the members of one side of the market rank only a small (vanishing) fraction of the 
members of the other side; the unranked individuals are considered unacceptable to them. Lee (2011) introduces cardinal 
utilities which are chosen at random within a fixed interval, and measures the size of the core in these cardinal utility 
units.1 Azevedo and Leshno (2012) consider a many-to-one setting with a constant number of schools on one side, and an 
increasing number of students, modeling the limit as having a continuum of students. Bodoh-Creed (2013) also studies a 
continuum of agents, using a type-space to describe their characteristics. Ashlagi et al. (2013) consider finite one-to-one 
marriage markets with unequal numbers of men and women.

The above-mentioned results in this literature may be interpreted as pointing to their respective special modeling as-
sumptions as reasons behind the empirical finding that cores of large markets tend to be small. Our result points to a 
different reason – the correlation of rankings – which was also postulated by Roth and Peranson (1999). There are several 
other features that distinguish our approach from this recent literature. We deal not only with the size of the core, but also 
with the rank gaps. Our results apply to any given market with known bounds on the size of the ranking sets, rather than 
to most markets under some specific probabilistic model of sampling them. Moreover, our results apply to markets of any 
size, rather than being asymptotic for large markets.

Eeckhout (2000) and Clark (2006) gave conditions on the rankings that are sufficient for the uniqueness of stable 
matchings. However, they did not investigate conditions under which the set of stable matchings, though not necessarily a 
singleton, must be small.

Caldarelli and Capocci (2001) and Boudreau and Knoblauch (2010) studied correlation of rankings via statistical simula-
tion. They introduce an objective trait of agents measured numerically, and assigning the value of this trait to individuals 
by random variables, they generate correlated and intercorrelated rankings. The simulations are restricted to the optimal 
matchings obtained by the deferred acceptance algorithm. Their main interest is in gender satisfaction, which is the sum of 
the ranks of the women by their mates in the optimal matchings.

2. Preliminaries

A ranking of a nonempty finite set X is a bijection r : X → {1, . . . , |X |}. We interpret r(x) < r(x′) as x being preferred 
to x′ . Thus, rank 1 is best, rank 2 is second-best, etc.

A marriage market is a tuple (M, W , R M , RW ) where M and W are disjoint sets of finite size n > 0 of men and women, 
called the two sides of the market, R M = (rm)m∈M is an n-tuple of rankings of W by the men, and RW = (rw)w∈W is an 
n-tuple of rankings of M by the women. We refer also to R M and RW as the sets of rankings in each n-tuple correspondingly. 
No confusion will result.

A matching is a set of pairs μ = {(m, w)} which is the graph of a bijection of M and W . For each man m we denote by 
μ(m) the unique woman w such that (m, w) ∈ μ. For each woman w , μ(w) is similarly defined.

1 Lee’s result can be reconciled with Pittel’s by noting that, as n → ∞, if n ranks are scaled to lie in a fixed interval, then n
ln n consecutive ranks occupy 

only a vanishing subinterval. We note that Lee’s model allows for correlation in preferences, but this is not what drives his result (which holds regardless 
of the correlation).
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A pair (m, w) blocks the matching μ if rm(w) < rm(μ(m)) and rw(m) < rw(μ(w)). The matching μ is stable if no 
pair blocks it. The core, C , of the marriage problem is the set of all its stable matchings. There exists a man-optimal 
stable matching, μM , that satisfies for each m and w , rm(μM(m)) = minμ∈C rm(μ(m)), and rw(μM(w)) = maxμ∈C rw(μ(w)). 
Similarly, there exists a woman-optimal stable matching μW with the corresponding properties.

We say that one of the sides of a marriage market is universally ranked if it is ranked in the same way by all the 
individuals of the other side. If, say, the men are universally ranked as m1, . . . , mn , then it is easy to check that in any stable 
matching m1 must be matched to his top choice, m2 must be matched to his highest choice among the remaining n − 1
women, and so on. This leads to the following consequences:

(i) If one of the sides, say M , is universally ranked, then there exists a unique stable matching.
(ii) In this matching each man ranks his spouse no worse than she ranks him.

(iii) Consequently, when both sides are universally ranked, then individuals who are matched in the unique stable matching, 
have the same rank.

3. The size of the ranking sets and the rank gaps

Given a set R of rankings of a set X , the displacement of x ∈ X is δ(x) = maxr∈R r(x) − minr∈R r(x). We use the maximal 
displacement, Δmax(R) = maxx∈X δ(x) and the average displacement, Δav(R) = (1/n) 

∑
x∈X δ(x), where n = |X |, as measures 

of the size of R .
The rank gap of a pair (m, w) ∈ M × W is γ (m, w) = |rm(w) − rw(m)|. The disparity of the mutual rankings of spouses 

in a given matching μ is measured by the maximal rank gap in μ, Γ max(μ) = max(m,w)∈μ γ (m, w) and the average rank 
gap in μ, Γ av(μ) = (1/n) 

∑
(m,w)∈μ γ (m, w).

Our first theorem shows that property (ii) above is robust: if the men are not quite universally ranked, but every man is 
displaced across RW by at most k ranks, then in every stable matching, a man may rank his spouse worse than she ranks 
him by no more than 2k ranks. The case k = 0 of this statement reduces to property (ii).

Theorem 1. For each stable matching μ and (m, w) ∈ μ,

rm(w) − rw(m) ≤ 2Δmax(RW ). (1)

Proof. Let μ be a stable matching and (m, w) ∈ μ. Man m prefers rm(w) − 1 women to w . By the stability of μ each one 
of these rm(w) − 1 women is matched to a man she prefers to m. Thus, we have rm(w) − 1 distinct men m′ , each of them 
preferred to m by at least one woman. For every such m′ , the bound on the displacements of m and m′ implies that

rw
(
m′) < rw(m) + 2Δmax(RW ). (2)

In words, man m′ must be among the rw (m) + 2Δmax(RW ) − 1 top choices of woman w . As we have rm(w) − 1 men m′ , it 
follows that

rm(w) − 1 ≤ rw(m) + 2Δmax(RW ) − 1. (3)

Inequality (1) follows.2 �
As a corollary of Theorem 1, we find that property (iii) above is robust: if the rankings are not quite universal, but 

every individual is displaced across the rankings by the members of the other side by at most k ranks, then in every stable 
matching, the maximal rank gap is no more than 2k. The case k = 0 of this statement reduces to property (iii).

Corollary 1. For any stable matching μ,

Γ max(μ) ≤ 2 max
{
Δmax(RW ),Δmax(R M)

}
. (4)

Proof. By (1) and the analogous bound rw (m) − rm(w) ≤ 2Δmax(R M) we conclude that for each stable matching μ and pair 
(m, w) ∈ μ, |rw(m) − rm(w)| ≤ 2 max{Δmax(RW ), Δmax(R M)}, from which (4) follows. �

When the maximal displacement is much larger than the average one, the upper bound on the maximal rank gap 
obtained above may not be useful. Hence we proceed to establish an upper bound in terms of average displacements. 
Namely, in any stable matching, the average rank gap is at most twice the sum of the average displacement of men and the 
average displacement of women.

2 For Δmax(RW ) ≥ 1 a tighter bound holds, namely rm(w) − rw (m) ≤ 2Δmax(RW ) − 1. Indeed, in this case one of the rw (m) + 2Δmax(RW ) − 1 top choices 
of woman w is m himself. Thus, taking into account that all men m′ in question are distinct from m, we gain 1 in inequality (3).
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Theorem 2. For any stable matching μ,

Γ av(μ) ≤ 2
(
Δav(RW ) + Δav(R M)

)
. (5)

In the proof of Theorem 2, we break the sum of rank gaps in a stable matching into two parts: the sum over those 
matched pairs in which the woman ranks her husband better than he ranks her, and the sum over those pairs where the 
opposite holds. In order to upper bound each of these two sums separately, we use the following proposition.

Proposition 1. For every stable matching μ and any subset M0 of M,∑
m∈M0

[
rm

(
μ(m)

) − rμ(m)(m)
] ≤

∑
m∈M0

δ(m) +
∑

m′∈M

δ
(
m′) ≤ 2nΔav(RW ). (6)

Proof. Let μ be a stable matching and M0 ⊆ M . Consider a man m ∈ M0. As in the proof of Theorem 1, by the stability of 
μ, we can find rm(μ(m)) − 1 men m′ , each of them satisfying

rμ(m′)
(
m′) < rμ(m′)(m). (7)

Given any fixed woman and any rank i, she can rank at most i − 1 of those men m′ in ranks 1, . . . , i − 1. Taking 
i = maxw∈W rw(m), we conclude that at least rm(μ(m)) − maxw∈W rw(m) of these men m′ are ranked by her in rank 
maxw∈W rw(m) or worse, thus satisfying

max
w∈W

rw
(
m′) ≥ max

w∈W
rw(m). (8)

Denote by Pm the set of men m′ satisfying (7) and (8). As shown, we have |Pm| ≥ rm(μ(m)) − maxw∈W rw(m). Doing 
this for each m ∈ M0 separately, we get a system of sets Pm , m ∈ M0, with union P = ⋃

m∈M0
Pm . For each m′ ∈ P , let 

Q m′ = {m ∈ M0 | m′ ∈ Pm}. Such a man m′ satisfies (7) with respect to every m ∈ Q m′ , and therefore

rμ(m′)
(
m′) ≤ max

m∈Q m′
rμ(m′)(m) − |Q m′ | ≤ max

m∈Q m′
max
w∈W

rw(m) − |Q m′ |. (9)

On the other hand, since m′ satisfies (8) with respect to every m ∈ Q m′ , we get

max
w∈W

rw
(
m′) ≥ max

m∈Q m′
max
w∈W

rw(m). (10)

Combining (9) and (10), we obtain that δ(m′) ≥ |Q m′ |. This yields∑
m∈M0

[
rm

(
μ(m)

) − max
w∈W

rw(m)
]

≤
∑

m∈M0

|Pm| =
∑

m′∈P

|Q m′ |

≤
∑

m′∈P

δ
(
m′) ≤

∑
m′∈M

δ
(
m′). (11)

We also have∑
m∈M0

[
max
w∈W

rw(m) − rμ(m)(m)
]

≤
∑

m∈M0

δ(m), (12)

and upon adding (11) and (12) we get (6). �
Proof of Theorem 2. Given a stable matching μ, let M0 be the set of men m for whom rm(μ(m)) > rμ(m)(m), and let W0
be the set of women w for whom rw(μ(w)) > rμ(w)(w). Adding (6) and the analogous bound for the subset W0 of W , and 
dividing by n, we obtain (5). �

Theorem 2 shows that the average rank gap is guaranteed to be small even if there are a few individuals about whom 
there is significant disagreement in the rankings, as long as the rankings roughly agree about most individuals.

A different kind of concern about the applicability of our bounds involves the possible presence of a few individuals who 
hold significantly different rankings. Indeed, suppose that most men rank the women in roughly the same way, but there is 
a small set of men M∗ whose rankings of the women are out-of-line with the rest. Similarly, most women rank the men 
in roughly the same way, but there is a small set of women W ∗ with very different rankings of the men. Then Theorem 2
is not directly useful, because the right-hand-side is made large by the presence of M∗ and W ∗ . Nevertheless, the result is 
robust with respect to this possibility. All we need to do is to consider the average displacements across the rankings by 
“regular” individuals only, namely, Δav(RW \W ∗ ) and Δav(R M\M∗ ). We get the bound (5) up to a small error term:

Γ av(μ) ≤ 2
(
Δav(RW \W ∗) + Δav(R M\M∗)

) + |W ∗| + |M∗| + max
(|W ∗|, |M∗|).

The proof is a straightforward adaptation of the proofs of Proposition 1 and Theorem 2, and is omitted.



282 R. Holzman, D. Samet / Games and Economic Behavior 88 (2014) 277–285
4. The size of the core

We now provide bounds on the size of the core in terms of the size of the ranking sets and the rank gap. For this we 
define two metrics on matchings. The woman-metric on matchings, dW , is defined for each pair of matchings μ1 and μ2
by

dW (μ1,μ2) = (1/n)
∑

w∈W

∣∣rw
(
μ1(w)

) − rw
(
μ2(w)

)∣∣.
The man-metric dM is similarly defined. The diameters of the core with respect to the metrics dW and dM are denoted by 
DW (C) and D M(C) correspondingly. For stable matchings μ1 and μ2, |rw(μ1(w)) −rw (μ2(w))| ≤ rw(μM(w)) −rw (μW (w))

for each w . Thus, DW (C) = (1/n) 
∑

w∈W [rw(μM(w)) − rw(μW (w))], and a similar expression holds for D M(C).
The following theorem shows that property (i) in Section 2 is robust: if the men are not quite universally ranked, but 

their average displacement across RW is known to be small, then the diameter of the core with respect to the woman-metric 
is not larger than that. The case Δav(RW ) = 0 of this statement reduces to property (i).

Theorem 3.

DW (C) ≤ Δav(RW ).

Proof.

DW (C) = (1/n)
∑

w∈W

[
rw

(
μM(w)

) − rw
(
μW (w)

)]

= (1/n)
∑

m∈M

[
rμM (m)(m) − rμW (m)(m)

]

≤ (1/n)
∑

m∈M

δ(m)

= Δav(RW ). �
Similar to the discussion at the end of the previous section, Theorem 3 can also be adapted to allow for the presence of 

a few individuals holding out-of-line rankings. A straightforward adaptation of the proof above yields:

DW (C) ≤ Δav(RW \W ∗) + 2
∣∣W ∗∣∣.

In the next theorem, the size of the core is bounded in terms of the average gap of the woman and man optimal 
matchings.

Theorem 4.

D M(C) + DW (C) ≤ Γ av(μM) + Γ av(μW ).

Proof. Define SMM = ∑
m∈M rm(μM(m)) and SMW = ∑

m∈M rm(μW (m)), and define SW W and SW M similarly. Then 
D M(C) = (1/n)[SMW − SMM ] and DW (C) = (1/n)[SW M − SW W ]. Next, observe that

|SW M − SMM | =
∣∣∣∣
∑

w∈W

rw
(
μM(w)

) −
∑

m∈M

rm
(
μM(m)

)∣∣∣∣
=

∣∣∣∣
∑

w∈W

rw
(
μM(w)

) −
∑

w∈W

rμM (w)(w)

∣∣∣∣
≤

∑
w∈W

∣∣rw
(
μM(w)

) − rμM (w)(w)
∣∣

= nΓ av(μM),

and similarly, |SMW − SW W | ≤ nΓ av(μW ). Thus,

D M(C) + DW (C) = (1/n)[SMW − SMM + SW M − SW W ]
≤ (1/n)

[|SW M − SMM | + |SMW − SW W |]
≤ Γ av(μM) + Γ av(μW ). �
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The following is an immediate corollary of this theorem.

Corollary 2. If the rank gaps in the man-optimal and the woman-optimal matchings vanish, then there exists a unique stable matching.

5. Examples and counterexamples

We present here a few constructions of marriage markets, showing that some of the bounds proved above are tight, and 
indicating that certain variants of these bounds do not hold in general.

Our first example shows that the upper bounds in Theorem 1 and Corollary 1 are tight (in the slightly improved form 
given in footnote 2).

Example 1. Let k ≥ 1. Consider a market with 2k individuals on each side, numbered as M = {m1, . . . , m2k} and W =
{w1, . . . , w2k}. Let the women be universally ranked from top to bottom as w1, . . . , w2k . Let the rankings of the men by the 
women be as follows:

wi : m1,m2, . . . ,mk,m2k,mk+1, . . . ,m2k−1 (i = 1, . . . ,k)

w j : m1,mk+1, . . . ,m2k−1,m2k,m2, . . . ,mk ( j = k + 1, . . . ,2k − 1)

w2k : m2k,m1, . . . ,mk−1,mk,mk+1, . . . ,m2k−1

The unique stable matching is obtained when each of the women w1, . . . , w2k in turn gets her top choice among the still 
available men. This yields the matching {(mi, wi)}i=1,...,2k , with rm2k (w2k) − rw2k (m2k) = 2k − 1. On the other hand, it is 
easy to check that Δmax(RW ) = k. This shows that the upper bound rm(w) − rw(m) ≤ 2Δmax(RW ) − 1 (for Δmax(RW ) ≥ 1) 
is tight. As Δmax(R M) = 0, this example also shows that one cannot replace the upper bound 2 max{Δmax(RW ), Δmax(R M)}
on Γ max(μ) by Δmax(RW ) + Δmax(R M).

For the bound on the average rank gap in terms of the average displacements, we do not have a construction meeting 
the upper bound. In fact, we conjecture that the factor of 2 in the upper bounds of Proposition 1 and Theorem 2 can be 
lowered to 1. The following example shows that it cannot be replaced by any constant factor smaller than 1.

Example 2. Consider a market with M = {m1, . . . , mn} and W = {w1, . . . , wn}. Let the women be universally ranked as 
w1, . . . , wn . Let the ranking of the men by woman wi , i = 1, . . . , n, be obtained from the ranking m1, . . . , mn by promoting 
mi to the top of the list, while leaving the other men in the same order. The unique stable matching is {(mi , wi)}i=1,...,n . 
Here the rank gaps are 0, 1, . . . , n − 1 respectively, while the displacements of the men are 1, 2, . . . , n − 1, n − 1 respectively. 
Thus Γ av(μ) = (n − 1)/2, Δav(RW ) = (n + 2)(n − 1)/(2n), and the ratio between them approaches 1 as n goes to infinity.

According to statement (i) above, if either one of the sides is universally ranked, then the core is a singleton. Thus, 
one may expect to be able to assert that the diameter of the core in the woman-metric, DW (C), is small, not only when 
Δav(RW ) is small (as shown in Theorem 3), but also when Δav(R M) is small. The following example refutes this intuition, 
and illustrates some additional points that we discuss below.

Example 3. Let k ≥ 2, and let n be a multiple of k, say n = k�. Consider a market where the men are partitioned into � blocks 
of size k each: Mi = {mi

1, . . . , m
i
k}, i = 1, . . . , �. Similarly, the women are partitioned into W i = {wi

1, . . . , w
i
k}, i = 1, . . . , �. 

Let every man rank the blocks of women as W 1, . . . , W �; within the blocks, the women are ranked as wi
1, . . . , wi

k , except 
that for each i, the men in Mi rank the women in the corresponding block W i in a cyclic fashion:

mi
j : wi

j, . . . , wi
k, wi

1, . . . , wi
j−1

(with subscripts taken modulo k). Every woman in W i , i = 1, . . . , �, ranks 
⋃i

p=1 M p above the rest of the men; within this 
union of blocks, woman wi

j ranks mi
j+1 first and mi

j last (that is, in rank ik); besides that, the rankings are immaterial.

One may check, by induction on i, that in every stable matching the men in Mi are matched to the women in W i , 
i = 1, . . . , �. Within each pair of blocks Mi, W i , the man-optimal stable matching μM consists of the pairs {(mi

j, w
i
j)} j=1,...,k , 

whereas the woman-optimal one μW consists of the pairs {(mi
j+1, w

i
j)} j=1,...,k . Thus,

DW (C) = 1

k�

�∑
i=1

k(ik − 1) = k(� + 1)

2
− 1.

Note that Δav(R M) = Δmax(R M) = k − 1. By keeping k fixed and letting � grow, we see that DW (C) cannot be bounded 
by any function of Δav(R M) or even Δmax(R M). As remarked above, if Δmax(R M) vanishes then so does DW (C), but our 
construction shows that any positive value of Δmax(R M) is consistent with arbitrarily large values of DW (C).
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We observe also that in our example D M(C) = k − 1, which shows (upon interchanging the roles of men and women) 
that Theorem 3 is tight. It may also be checked that our example gives equality in Theorem 4, thus showing its tightness, 
as well.

Example 3 serves to illustrate yet another point. A different way to measure the size of a set R of rankings of a set X
would be to define a metric on R by d(r, r′) = (1/n) 

∑
x∈X |r(x) −r′(x)|, where n = |X |, and consider D(R) = maxr,r′∈R d(r, r′), 

the diameter of R under this metric. Note that in general D(R) ≤ Δav(R). To calculate D(R M) in our example, note that if 
m ∈ Mi and m′ ∈ Mi′ then rm and rm′ may differ only regarding women in W i ∪ W i′ . Within W i one ranking is a cyclic shift 
of the other, so in the worst case we have 

∑
w∈W i |rm(w) − rm′ (w)| = �k2/2
, and similarly for W i′ . This gives

D(R M) = 1

k�
· 2

⌊
k2

2

⌋
≤ k

�
.

By keeping the ratio k/� fixed while both of them grow, we see that D(R M) can be arbitrarily small while D M(C) is 
arbitrarily large. We conclude that this alternative measure of the size of a set of rankings cannot replace Δav in providing 
an upper bound on the size of the core (or, for that matter, on the average rank gap).

Our final question is whether there exist upper bounds, similar to Theorems 3 and 4, not only on the rank difference 
between mates in μM and μW for an average individual, but for every individual. The following example gives a negative 
answer.

Example 4. Consider a market with M = {m1, . . . , mn} and W = {w1, . . . , wn}. The women are basically ranked as 
w2, . . . , wn, w1, but man mi , i = 2, . . . , n − 1, swaps wi and wi+1 in his ranking, and the other two men make specific 
adjustments as indicated:

m1 : w2, w1, w3, . . . , wn

m2 : w3, w2, w4, . . . , wn, w1

mi : w2, . . . , wi−1, wi+1, wi, wi+2, . . . , wn, w1 (i = 3, . . . ,n − 2)

mn−1 : w2, . . . , wn−2, wn, wn−1, w1

mn : w2, . . . , wn−1, w1, wn

The men are basically ranked as m1, . . . , mn , but woman wi , i = 2, . . . , n, swaps mi−1 and mi in her ranking, yielding the 
rankings:

w1 : m1,m2, . . . ,mn

w2 : m2,m1,m3, . . . ,mn

wi : m1, . . . ,mi−2,mi,mi−1,mi+1, . . . ,mn (i = 3, . . . ,n − 1)

wn : m1, . . . ,mn−2,mn,mn−1

We claim that μ = {(mi, wi+1)}i=1,...,n−1 ∪ {(mn, w1)} is the man-optimal stable matching. To check stability, note that 
if mi prefers w j to his mate then 2 ≤ j ≤ i − 1, but such a woman w j prefers her mate to mi . To verify that μ is man-
optimal, use the fact that μM must satisfy rw (μM(w)) ≥ rw(μ(w)) for every w ∈ W . Considering in turn the women 
w1, wn, wn−1, . . . , this forces μM = μ.

Next, we claim that μ′ = {(mi, wi)}i=1,...,n is the woman-optimal stable matching. To check stability, note that if wi
prefers m j to her mate then j ≤ i − 2, but such a man m j prefers his mate to wi . To verify that μ′ is woman-optimal, use 
the property rw(μW (w)) ≤ rw(μ′(w)) successively for the women w1, w2, w3, . . . , deducing that μW = μ′ .

Now, woman w1 is matched to her top-ranked man m1 in μW and to her bottom-ranked man mn in μM . This is in 
spite of the fact that δ(m) ≤ 2 for every m ∈ M , which shows that the upper bound of Theorem 3 does not hold when both 
sides of the inequality are replaced by their max versions. A similar conclusion applies to the bound of Theorem 4, since 
Γ max(μM) = 2 and Γ max(μW ) = 1.
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